Senin, 20 Desember 2010

Kemenangan Indonesia atas Filipina

 

JAKARTA, KOMPAS.com — Ribuan suporter bersukacita merayakan gol penentu yang dicetak Cristian Gonzales ke gawang Filipina dalam semifinal Piala AFF di Stadion Utama Gelora Bung Karno, Minggu (19/12/2010). Indonesia akhirnya melaju ke final Piala AFF setelah menang dengan agregat 2-0 atas Filipina, dan akan melawan Malaysia pada 26 dan 29 Desember mendatang.

Selasa, 07 Desember 2010

Turbocharger

Turbocharger adalah sebuah kompresor yang digunakan dalam mesin pembakaran dalam untuk meningkatkan keluaran tenaga mesin dengan meningkatkan massa oksigen yang memasuki mesin. Kunci keuntungan dari turbocharger adalah mereka menawarkan sebuah peningkatan yang lumayan banyak dalam tenaga mesin hanya dengan sedikit menambah berat.
Sebuah kerugian dalam mesin petrol adalah rasio kompresi harus direndahkan (agar tidak melewat tekanan kompresi maksimum dan untuk mencegah knocking mesin) yang menurunkan efisiensi mesin ketika beroperasi pada tenaga rendah. Kerugian ini tidak ada dalam mesin diesel diturbocharge yang dirancang khusus. Namun, untuk operasi pada ketinggian, pendapatan tenaga dari sebuah turbocharger membuat perbedaan yang jauh dengan keluaran tenaga total dari kedua jenis mesin. Faktor terakhir ini membuat mesin pesawat dengan turbocharge sangat menguntungkan; dan merupakan awal pemikiran untuk pengembangan alat ini.
Komponen mesin ini memiliki tiga bagian penting: roda turbin, roda kompressor dan rumah as. Roda turbin yang bersudu-sudu ini berputar memanfaatkan tekanan gas buang keluar, kemudian melalui as terputarnya roda turbin ini berputar pula roda kompressor dengan sudu-sudunya sehingga memompa udara masuk dalam massa yang padat. Mengingat komponen ini sering berputar melebihi 80,000 putaran per menit maka pelumasan yang baik sangat diperlukan.
 

CNC

Numerical Control / NC (berarti "kontrol numerik") merupakan sistem otomatisasi Mesin perkakas yang dioperasikan oleh perintah yang diprogram secara abstark dan disimpan dimedia penyimpanan, hal ini berlawanan dengan kebiasaan sebelumnya dimana mesin perkakas biasanya dikontrol dengan putaran tangan atau otomatisasi sederhana menggunakan cam. Kata NC sendiri adalah singkatan dalam Bahasa inggris dari kata Numerical Control yang artinya Kontrol Numerik. Mesin NC pertama diciptakan pertama kali pada tahun 40-an dan 50-an, dengan memodifikasi Mesin perkakas biasa. Dalam hal ini Mesin perkakas biasa ditambahkan dengan motor yang akan menggerakan pengontrol mengikuti titik-titik yang dimasukan kedalam sistem oleh perekam kertas. Mesin perpaduan antara servo motor dan mekanis ini segera digantikan dengan sistem analog dan kemudian komputer digital, menciptakan Mesin perkakas modern yang disebut Mesin CNC (computer numerical control) yang dikemudian hari telah merevolusi proses desain. Saat ini mesin CNC mempunyai hubungan yang sangat erat dengan program CAD. Mesin-mesin CNC dibangun untuk menjawab tantangan di dunia manufaktur modern. Dengan mesin CNC, ketelitian suatu produk dapat dijamin hingga 1/100 mm lebih, pengerjaan produk masal dengan hasil yang sama persis dan waktu permesinan yang cepat.
NC/CNC terdiri dari tiga bagian utama :
  1. Progam
  2. Control Unit/Processor
  3. Motor listrik servo untuk menggerakan kontrol pahat
  4. Motor listrik untuk menggerakan/memutar pahat
  5. Pahat
  6. Dudukan dan pemegang

prinsip kerja

Prinsip kerja NC/CNC secara sederhana dapat diuraikan sebagai berikut :
  1. Programer membuat program CNC sesuai produk yang akan dibuat dengan cara pengetikan langsung pada mesin CNC maupun dibuat pada komputer dengan software pemrogaman CNC.
  2. Program CNC tersebut, lebih dikenal sebagai G-Code, seterusnya dikirim dan dieksekusi oleh prosesor pada mesin CNC menghasilkan pengaturan motor servo pada mesin untuk menggerakan perkakas yang bergerak melakukan proses permesinan hingga menghasilkan produk sesuai program.

Perkakas dengan varian CNC

Jumat, 03 Desember 2010

penjernihan air ( www.iptek.net.id )

PEMBUATAN

  1. Membuat pipa penyaringan lihat Gambar 1. :
    1. Ambil 2 pipa PVC diameter 0,75 inci dengan panjang 35 cm.
    2. Pipa PVC dilubangi teratur sepanjang 20 cm.
    3. Bagian dari pipa yang dilubangi dibalut dengan ijuk kemudian ijuk diikat dengan tali plastik
    4. Salah satu ujung pipa dibuat ulir.

      Gambar 1. Pipa Penyaring
  2. Pemasangan pipa penyaring (lihat Gambar 2.).
    Pipa penyaring dipasang pada drum pengendapan dan penyaringan dengan jarak 10 cm dari dasar drum.
  3. Membuat drum pengendapan (lihat Gambar 2 dan 3)
    1. Buat lubang dengan bor besi 10 cm dari dasar pada dinding drum untuk pipa penyaring.
    2. Pasang pipa penyaring yang sudah dibalut pada soket yang sudah tersedia (lihat keterangan No. 2)
    3. Pasang kran
    4. Buat lubang pada dasar drum dengan tutup.

      Gambar 2. Pemasangan Pipa Penyaring
  4. Membuat drum penyaring (lihat Gambar 2 dan 3)
    1. Buat lubang untuk pemasangan pipa penyaring dengan jarak 10 cm dari dasar drum.
    2. Isi drum berturut-turut dengan krikil setebal 20 cm, ijuk 5 cm, arang 10 cm, ijuk 10 cm dan potongan bata 10 cm.
  5. Penyusunan drum endapan dan penyaringan (lihat Gambar 3)
    1. Drum pengendapan dan penyaringan disusun bertingkat.
    2. Kran-kran ditutup dan air diisikan ke dalam drum pengendapan
    3. Setelah 30 menit air dari drum pengendapan dialirkan ke dalam drum penyaringan.
    4. Aliran air yang keluar dari drum penyaringan disesuaikan dengan masukan dari drum pengendapan.

      Gambar 3. Cara Kerja Penyaring Air

koagulasi

Koagulasi (en:coagulation, clotting) adalah suatu proses yang rumit di dalam sistem koloid darah yang memicu partikel koloidal terdispersi untuk memulai proses pembekuan (en:agglomerate) dan membentuk trombus. Koagulasi adalah bagian penting dari hemostasis, yaitu saat penambalan dinding pembuluh darah yang rusak oleh keping darah dan faktor koagulasi (yang mengandung fibrin) untuk menghentikan pendarahan (en:hemorrhage) dan memulai proses perbaikan. Kelainan koagulasi dapat meningkatkan resiko pendarahan atau trombosis.

Proses koagulasi terjadi segera setelah terjadinya luka pada pembuluh darah dengan rusaknya endotelium (en:endothelium). Langkah awal koagulasi adalah dengan pelepasan komponen fosfolipid (en:phospholipid) yang disebut faktor jaringan (en:tissue factor) dan fibrinogen sebagai inisiasi sebuah reaksi berantai]. Segera setelah itu keping darah bereaksi membentuk penyumbat pada permukaan luka, reaksi ini disebut hemostasis awal (en:primary). Hemostasis lanjutan (en:secondary) terjadi hampir bersamaan:protein dalam plasma darah yang disebut faktor koagulasi merespon secara berjenjang dan sangat rumit untuk membentuk jaring-jaring fibrin yang memperkuat penyumbatan keping darah.

Saringan Udara Mobil

Saringan udara yang terdapat pada mesin kendaraan anda berfungsi untuk menyaring kotoran dan debu dari udara , sehingga memberi kesempatan udara masuk lebih banyak ke ruang bakar. Terhambatnya udara akan menyebabkan pembakaran tidak sempurna dan memboroskan bahan bakar. Karena berfungsi sebagai penyaring, tentu saja saringan udara ini harus bersih dari kotoran. Untuk itu saringan udara harus selalu dicuci dengan pembersih khusus.

Tapi dengan kondisi perekonomian yang naik turun, menyebabkan pembersih, yang biasanya merek luar menjadi melonjak harganya. Bagaimana kebersihan saringan udara terjaga dengan biaya yang hemat. Anda bisa gunakan shampo yang biasanya anda gunakan untuk mencuci rambut.

Caranya :

Siapkan alat yang akan digunakan seperti shampo yang tidak mengandung detergen dan conditioner, tabung penyemprot yang udah diisi air, dan kuas.Campurkan air dalam tabung penyemprot dengan shampo secukupnya.Siramlah saringan udara dengan air, sambil membersihkan kotoran bagian luar dengan kuas. Lalu semprotkan campuran air dan shampo pada saringan, kemudian diamkan beberapa saat. Bersihkan kotoran yang melekat dengan kuas. Setelah itu, bilaslah saringan dengan air yang dialirkan dari arah dalam ke luar. Ulangi beberapa kali sampai benar-benar bersih dari kotoran yang menempel. Setelah yakin bersih, keringkan dengan cara diangin-anginkan di tempat yang teduh dan bertekanan udara rendah. Ingat ! jangan dijemur di bawah sinar matahari, saringan udara dari bahan kain kasa ini akan berubah ukuran. Sebelum dipasang kembali, basahi saringan dengan oli.

evaporator

Evaporator adalah sebuah alat yang berfungsi mengubah sebagian atau keseluruhan sebuah pelarut dari sebuah larutan dari bentuk cair menjadi uap. Evaporator mempunyai dua prinsip dasar, untuk menukar panas dan untuk memisahkan uap yang terbentuk dari cairan. Evaporator umumnya terdiri dari tiga bagian, yaitu penukar panas, bagian evaporasi (tempat di mana cairan mendidih lalu menguap), dan pemisah untuk memisahkan uap dari cairan lalu dimasukkan ke dalam kondenser (untuk diembunkan/kondensasi) atau ke peralatan lainnya. Hasil dari evaporator (produk yang diinginkan) biasanya dapat berupa padatan atau larutan berkonsentrasi. Larutan yang sudah dievaporasi bisa saja terdiri dari beberapa komponen volatil (mudah menguap).Evaporator biasanya digunakan dalam industri kimia dan industri makanan. Pada industri kimia, contohnya garam diperoleh dari air asin jenuh (merupakan contoh dari proses pemurnian) dalam evaporator. Evaporator mengubah air menjadi uap, menyisakan residu mineral di dalam evaporator. Uap dikondensasikan menjadi air yang sudah dihilangkan garamnya Pada sistem pendinginan, efek pendinginan diperoleh dari penyerapan panas oleh cairan pendingin yang menguap dengan cepat (penguapan membutuhkan energi panas) Evaporator juga digunakan untuk memproduksi air minum, memisahkannya dari air laut atau zat kontaminasi lain.

sistem pendingin mesin

Sistem pendinginan dalam mesin kendaraan adalah suatu sistem yang berfungsi untuk menjaga supaya temperatur mesin dalam kondisi yang ideal. Mesin pembakaran dalam (maupun luar) melakukan proses pembakaran untuk menghasilkan energi dan dengan mekanisme mesin dirubah menjadi tenaga gerak. Mesin bukan instrumen dengan efisiensi sempurna, panas hasil pembakaran tidak semuanya terkonversi menjadi energi, sebagian terbuang melalui saluran pembuangan dan sebagian terserap oleh material disekitar ruang bakar. Mesin dengan efisiensi tinggi memiliki kemampuan untuk konversi panas hasil pembakaran menjadi energi yang dirubah menjadi gerakan mekanis, dengan hanya sebagian kecil panas yang terbuang. Mesin selalu dikembangkan untuk mencapai efisiensi tertinggi, tetapi juga mempertimbangkan faktor ekonomis, daya tahan, keselamatan serta ramah lingkungan.
Proses pembakaran yang berlangsung terus menerus dalam mesin mengakibatkan mesin dalam kondisi temperatur yang sangat tinggi. Temperatur sangat tinggi akan mengakibatkan desain mesin menjadi tidak ekonomis, sebagian besar mesin juga berada di lingkungan yang tidak terlalu jauh dengan manusia sehingga menurunkan faktor keamanan. Temperatur yang sangat rendah juga tidak terlalu menguntungkan dalam proses kerja mesin. Sistem pendinginan digunakan agar temperatur mesin terjaga pada batas temperatur kerja yang ideal.
Prinsip pendinginan adalah melepaskan panas mesin ke udara, tipe langsung dilepaskan ke udara disebut pendinginan udara (air cooling), tipe menggunakan fluida sebagai perantara disebut pendinginan air

Pendinginan udara

Silinder mesin dengan sirip pendingin
Dalam sistem ini, panas mesin langsung dilepaskan ke udara. Mesin dengan sistem pendinginan udara mempunyai desain pada silinder mesin terdapat sirip pendingin. Sirip pendingin ini untuk memperluas bidang singgung antara mesin dengan udara sehingga pelepasan panas bisa berlangsung lebih cepat. Sebagian dilengkapi dengan kipas (kipas eletkris atau mekanis) untuk mengalirkan udara melalui sirip pendingin, sebagian yang lain tanpa menggunakan kipas.

Kelebihan

Tipe ini memiliki kelebihan :
  • Desain mesin lebih ringkas.
  • Berat mesin secara keseluruhan lebih ringan dibandingkan tipe pendinginan air.
  • Mudah perawatannya.
Tipe ini memiliki kekurangan, harus ada penyesuaian untuk digunakan di daerah dingin atau panas terutama mesin berkapasitas besar.
Tipe ini banyak diaplikasikan pada mesin pesawat, sebagian besar sepeda motor, mobil tipe lama dan sebagian kecil mobil tipe terbaru. Hampir semua mesin dengan kapasitas kecil menggunakan tipe ini, seperti mesin pemotong rumput, mesin genset dibawah 10 Kva, mesin pemotong kayu (chain saw) dan sebagainya.

[sunting] Pendinginan air

Sistem ini menggunakan media air sebagai perantara untuk melepaskan panas ke udara.

Komponen utama

Komponen utama dalam sistem ini adalah :
  1. Radiator, berfungsi untuk melepaskan panas.
  2. Saluran berupa pipa (tube) atau selang karet (hose).
  3. Pompa, berfungsi untuk sirkulasi air dalam sistem.
  4. Thermostat, berfungsi untuk menutup atau membuka jalur sirkulasi.
  5. Kipas, berfungsi untuk membantu pelepasan panas pada radiator.
Sistem ini sangat umum dipakai pada mobil, sedangkan sepeda motor jarang menggunakan tipe ini.

traktor

Traktor

Traktor adalah kendaraan yang didesain secara spesifik untuk keperluan traksi tinggi pada kecepatan rendah, atau untuk menarik trailer atau instrumen yang digunakan dalam pertanian atau konstruksi. Istilah ini umum digunakan untuk mendefinisikan suatu jenis kendaraan untuk pertanian. Instrumen pertanian umumnya digerakkan dengan menggunakan kendaraan ini, ditarik ataupun didorong, dan menjadi sumber utama mekanisasi pertanian. Istilah umum lainnya, "unit traktor", yang mendefinisikan kendaraan truk semi-trailer.
Kata traktor diambil dari bahasa Latin, trahere yang berarti "menarik". Ada juga yang mengatakan traktor merupakan gabungan dari kata traction motor, yaitu motor yang menarik. Awalnya dipakai untuk mempersingkat penjelasan "suatu mesin atau kendaraan yang menarik gerbong atau bajak, untuk menggantikan istilah "mesin penarik" (traction engine).
Di Inggris, Irlandia, Australia, India, Spanyol, Argentina, dan Jerman, kata "traktor" umumnya berarti "traktor pertanian", dan penggunaan kata traktor yang merujuk pada jenis kendaraan lain sangat jarang. Di Kanada dan Amerika Serikat, kata "traktor" juga berarti truk semi-trailer.
Instrumen pertanian bermesin pertama adalah mesin portabel di tahun 1800an, yaitu mesin uap yang bisa digunakan untuk mengendalikan instrumen mekanis pertanian. Sekitar tahun 1850, mesin penarik dikembangkan dari mesin tersebut, dan digunakan secara luas di pertanian. Traktor pertama adalah mesin bajak bermesin uap.
Traktor yang dibuat di tahun 1920an
Traktor bisa diklasifikasikan sebagai two wheel drive, four wheel drive, atau track tractor. Traktor, kecuali track tractor umumnya memiliki 4 roda dengan dua roda yang lebih besar di belakang atau keempat roda sama besar. Track tractor memiliki penggerak seperti tank yang membuatnya mampu bergerak di berbagai medan. Karena traksinya yang sangat hebat, track tractor menjadi populer di California pada tahun 1930an.
Traktor pada awalnya menggunakan mesin uap. Pada awal abad ke 20, mesin pembakaran dalam menjadi pilihan utama sumber tenaga traktor. Antara tahun 1900 hingga 1960, bensin menjadi bahan bakar utama, dan minyak tanah dan etanol sebagai alternatif bahan bakar. Dieselisasi mencapai puncaknya pada tahun 1960, dan traktor pertanian modern umumnya menggunakan mesin diesel yang memiliki output power antara 18 hingga 575 tenaga kuda (15-480 kW).
Kebanyakan traktor tua memakai transmisi manual. Traktor jenis ini memiliki beberapa rasio kecepatan, umumnya 3 hingga 6. Kecepatan rendah umumnya dipakai di lahan pertanian sedangkan kecepatan tinggi umumnya dipakai di jalan.

sistem hidraulik

Sistem Hidrolik' adalah teknologi yang memanfaatkan zat cair, biasanya oli, untuk melakukan suatu gerakan segaris atau putaran. Sistem ini bekerja berdasarkan prinsip Jika suatu zat cair dikenakan tekananekanan itu akan merambat ke segala arah dengan tidak bertambah atau berkurang kekuatannya Sistem Hidrolik adalah teknologi yang memanfaatkan zat cair, biasanya oli, untuk melakukan suatu gerakan segaris atau putaran. Sistem ini bekerja berdasarkan prinsip Jika suatu zat cair dikenakan tekanan, maka tekanan itu akan merambat ke segala arah dengan tidak bertambah atau berkurang kekuatannya Hukum Archimedes (+250 sebelum Masehi)
"Jika suatu benda dicelupkan ke dalam sesuatu zat cair, maka benda itu akan mendapat tekanan keatas yang sama besarnya dengan beratnya zat cair yang terdesak oleh benda terseb Hukum Avogadro (1811)
"Jika dua macam gas (atau lebih) sama volumenya, maka gas-gas tersebut sama banyak pula jumlah molekul-molekulnya masing-masing, asal temperatur dan tekanannya sama pula".
Hukum Bernouilli (1738)
"Bagi zat-zat cair, yang tidak dapat dimampatkan dan yang mengalir secara stasioner, jumlah tenaga gerak, tenaga tempat dan tenaga tekanan adalah konstan".
Hukum Boyle (1662)
"Jika suatu kuantitas dari sesuatu gas ideal (yakni kuantitas menurut beratnya) mempunyai temperatur yang konstan, maka juga hasil kali volume dan tekanannya merupakan bilangan konstan".
Hukum Boyle-Gay Lussac (1802)
"Bagi suatu kuantitas dari suatu gas ideal (yakni kuantitas menurut beratnya) hasil kali dari volume dan tekanannya dibagi dengan temperatur mutlaknya adalah konstan".
Hukum Coulomb (1785)
* Gaya, yang dilakukan oleh dua kutub magnet yang satu pada yang lain, adalah sebanding-lurus dengan kuatnya mekanitisme kutub-kutub tersebut dan sebanding balik dengan kuadrat jarak antara kedua kutub tersebut.
   * Gaya, yang dilakukan oleh dua benda (yang masing-masing bermuatan listrik) yang satu pada yang lain, adalah sebanding-laras dengan kuatnya muatan listrik dari benda-benda tersebut dan sebanding-balik dengan kuadrat jarak antara kedua benda itu.
Hukum Gay Lussac (1802)
"Jika suatu kuantitas dari sesuatu gas ideal (yakni kuantitas menurut beratnya) mempunyai tekanan yang konstan, maka juga hasil bagi volume dan temperaturnya merupakan bilangan konstan" "gas berkembang secara linear dengan tekanan tetap dan suhu yang bertambah"
Hukum Dalton (1802)
"Tekanan dari suatu campuran yang terdiri atas beberapa macam gas (yang tidak bereaksi kimiawi yang satu dengan yang lain) adalah sama dengan jumlah dari tekanan-tekanan dari setiap gas tersebut, jelasnya tekanan dari setiap gas tersebut, jika ia masing-masing ada sendirian dalam ruang campuran tadi".
Hukum Dulong dan Petit (1819)
"Kalori jenis dari zat-zat padat adalah kira-kira 6 (enam) kalori per grammolecule".
Hukum-hukum (ayunan) Galilei (1596)
* Tempo ayunan tidak bergantung dari besarnya amplitudo (jarak ayunan), asal amplitudo tersebut tidak terlalu besar.
   * Tempo ayunan tidak bergantung dari beratnya bandulan ayunan.
   * Tempo ayunan adalah sebanding laras dengan akar dari panjangnya bandulan ayunan.
   * Tempo ayunan adalah sebanding-balik dengan akar dari percepatan yang disebabkan oleh gaya berat.
Hukum Kirchoff (1875)
* Jika berbagai arus listrik bertepatan di suatu titik, maka jumlah aljabar dari kekuatan arus-arus tersebut adalah 0 (nol) di titik pertepatan tadi.
   * Dalam suatu edaran arus listrik yang tertutup berlaku persamaan berikut: "Jumlah aljabar dari hasilkali-hasilkali kekuatan arus dan tahanan disetiap bagian (dari edaran tersebut) adalah sama dengan jumlah aljabar dari gaya-gaya gerak listriknya".
* Besar Arus listrik yang mengalir menuju titik percabangan sama dengan jumlah arus listrik yang keluar dari titik percabangan
Hukum Lenz (1878)
"Jika suatu pengantar listrik digerakkan dalam suatu medan magnet, maka arus listrik yang diinduksikan berarah sedemikian rupa, sehingga gerak pengantar listrik yang mengakibatkan induksi tadi terhambat olehnya.
Hukum Newton (1687)
"Dua benda saling menarik dengan suatu gaya yang sebanding-laras dengan massa-massa dari kedua benda tersebut dan sebanding-balik dengan kuadrat dari jarak antara kedua benda itu.
Hukum Ohm (1825)
"Jika suatu arus listrik melalui suatu penghantar, maka kekuatan arus tersebut adalah sebanding-laras dengan tegangan listrik yang terdapat diantara kedua ujung penghantar tadi". Hukum Ohm menyatakan bahwa besar arus yang mengalir pada suatu konduktor pada suhu tetap sebanding dengan beda potensial antara kedua ujung-ujung konduktor I = V / R HUKUM OHM UNTUK RANGKAIAN TERTUTUP I = n E
R + n rd
I = n
R + rd/p
n = banyak elemen yang disusun seri E = ggl (volt) rd = hambatan dalam elemen R = hambatan luar p = banyaknya elemen yang disusun paralel
RANGKAIAN HAMBATAN DISUSUN SERI DAN PARALEL
SERI
R = R1 + R2 + R3 + ... V = V1 + V2 + V3 + ... I = I1 = I2 = I3 = ...

PARALEL
1 = 1 + 1 + 1 R R1 R2 R3
V = V1 = V2 = V3 = ... I = I1 + I2 + I3 + ...
ENERGI DAN DAYA LISTRIK
ENERGI LISTRIK (W) adalah energi yang dipakai (terserap) oleh hambatan R.
W = V I t = V²t/R = I²Rt
Joule = Watt.detik KWH = Kilo.Watt.jam
DAYA LISTRIK (P) adalah energi listrik yang terpakai setiap detik.
P = W/t = V I = V²/R = I²R
Hukum Pascal (1658)
"Jika suatu zat cair dikenakan tekanan, maka tekanan itu akan merambat ke segala arah dengan tidak bertambah atau berkurang kekuatannya".
Hukum Snellius (1621)
* Jika suatu sinar cahaya melalui perbatasan dua jenis zat cair, maka garis semula dari sinar tersebut, garis sesudah sinar itu membias dan garis normal dititik-biasnya, ketiga-tiga garis tersebut terletak dalam satu bidang datar.
   * Perbandingan antara sinus-sinur dari sudut masuk dan sudut bias adalah konstan.
Hukum Stefan - Boltzmann (1898)
"Jika suatu benda hitam memancarkan kalor, maka intensitas pemancaran kalor tersebut sebanding-laras dengan pangkat empat dari temperatur absolut".
Hukum Wiedemann - Franz (1853)
"Bagi segala macam logam murni adalah perbandingan antara daya-penghantar-kalor spesifik dan daya penghantar-listrik spesifik suatu bilangan yang konstan, jika temperaturnya sama".
Hukum Gauss Gauss
"Jumlah garis-garis gaya listrik yang menembus suatu permukaan tertutup sebanding dengan jumlah muatan listrik yang dilingkupi oleh permukaan tertutup tersebut"
Hukum Maxwell(percobaan Maxwell) James Clerk Maxwell [1864]
"Oleh karena perubahan medan magnet dapat menimbulkan medan listrik,sebaliknya perubahan medan listrik dapat menimbulkan perubahan medan magnet"

Piston

Piston adalah sumbat geser yang terpasang di dalam sebuah silinder mesin pembakaran dalam silinder hidrolik, pneumatik, dan silinder pompa.
Tujuan piston dalam silinder adalah:
  • Mengubah volume dari isi silinder, perubahan volume bisa diakibatkan karena piston mendapat tekanan dari isi silinder atau sebaliknya piston menekan isi silinder. Piston yang menerima tekanan dari fluida dan akan mengubah tekanan tersebut menjadi gaya (linear).
  • Membuka-tutup jalur aliran.
  • Kombinasi dari hal di atas.
Dengan fungsi tersebut, maka piston harus terpasang dengan rapat dalam silinder. Satu atau beberapa ring (cincin) dipasang pada piston agar sangat rapat dengan silinder. Pada silinder dengan temperatur kerja menengah ke atas, bahan ring terbuat dari logam, disebut dengan ring piston (piston ring). Sedangkan pada silinder dengan temperatur kerja rendah, umumnya bahan ring terbuat dari karet, disebut dengan ring sil (seal ring).

Piston mesin


Piston dengan 2 ring kompresi dan 1 ring oli, waktu dikeluarkan dari silinder mesin
Piston pada mesin juga dikenal dengan istilah torak adalah bagian (parts) dari mesin pembakaran dalam yang berfungsi sebagai penekan udara masuk dan penerima tekanan hasil pembakaran pada ruang bakar. Piston terhubung ke poros engkol (crankshaft,) melalui setang piston (connecting rod). Material piston umumnya terbuat dari bahan yang ringan dan tahan tekanan, misal aluminium yang sudah dicampur bahan tertentu (aluminium alloy).

Ring piston

Ring piston memiliki dua tipe, ring kompresi dan ring oli. Ring kompresi berfungsi untuk pemampatan volume dalam silinder serta menghapus oli pada dinding silinder. Kemampuan kompresi ring piston yang sudah menurun mengakibatkan performa mesin menurun. Ring oli berfungsi untuk menampung dan membawa oli serta melumasi parts dalam ruang silinder. Ring oli hanya ada pada mesin empat tak karena pelumasan mesin dua tak menggunakan oli samping.

mikrometer

Mikrometer adalah alat ukur yang dapat melihat dan mengukur benda dengan satuan ukur yang memiliki ketelitian 0.01 mm
Micrometers.jpg
Satu mikrometer adalah secara luas digunakan alat di dalam teknik mesin electro untuk mengukur ketebalan secara tepat dari blok-blok, luar dan garis tengah dari kerendahan dan batang-batang slot. Mikrometer ini banyak dipakai dalam metrology, studi dari pengukuran,
Pada bab ini akan membahas tentang : 1 Jenis 2 Membaca satu mikrometer sistem inci 3 Membaca satu mikrometer metrik 4 Membaca satu mikrometer vernier 5. Acuan
Mikrometer memiliki 3 jenis umum pengelompokan yang didasarkan pada aplikasi berikut :
Mikrometer Luar Mikrometer luar digunakan untuk ukuran memasang kawat, lapisan-lapisan, blok-blok dan batang-batang.
Mikrometer dalam Mikrometer dalam digunakan untuk menguukur garis tengah dari lubang suatu benda
Mikrometer kedalaman Mikrometer kedalaman digunakan untuk mengukur kerendahan dari langkah-langkah dan slot-slot.
Satu mikrometer ditetapkan dengan menggunakan satu mekanisme sekrup titik nada.
Satu fitur yang menarik tambahan dari mikrometer-mikrometer adalah pemasukan satu tangkai menjadi bengkok yang terisi. Secara normal, orang bisa menggunakan keuntungan mekanis sekrup untuk menekan material, memberi satu pengukuran yang tidak akurat. Dengan cara memasang satu tangkai yang roda bergigi searah keinginan pada satu tenaga putaran tertentu.

jangka sorong ( vernier caliper )

Jangka sorong adalah alat ukur yang ketelitiannya dapat mencapai seperseratus milimeter. Terdiri dari dua bagian, bagian diam dan bagian bergerak. Pembacaan hasil pengukuran sangat bergantung pada keahlian dan ketelitian pengguna maupun alat. Sebagian keluaran terbaru sudah dilengkapi dengan display digital. Pada versi analog, umumnya tingkat ketelitian adalah 0.05mm untuk jangka sorang dibawah 30cm dan 0.01 untuk yang diatas 30cm.

 

Kegunaan

Kegunaan jangka sorong adalah:
  • untuk mengukur suatu benda dari sisi luar dengan cara diapit;
  • untuk mengukur sisi dalam suatu benda yang biasanya berupa lubang (pada pipa, maupun lainnya) dengan cara diulur;
  • untuk mengukur kedalamanan celah/lubang pada suatu benda dengan cara "menancapkan/menusukkan" bagian pengukur. Bagian pengukur tidak terlihat pada gambar karena berada di sisi pemegang.

 Jenis